< 문제 출처 >

이공학도를 위한 확률과 통계 3판 한글판

 

 

 

 

 

ds12.2.6-vacuum-transducer-bobbin-resistances.txt
0.00MB

 

 

 

1. ANOVA : 분산분석표 도출

 

> raw_datas <- read.table("ds12.2.6-vacuum-transducer-bobbin-resistances.txt", header=T)
> ANOVA = aov(Resistance~Temperature, data=raw_datas)
> summary(ANOVA)
            Df Sum Sq Mean Sq F value   Pr(>F)    
Temperature  1  624.7   624.7   156.9 1.74e-11 ***
Residuals   22   87.6     4.0                     
---
Signif. codes:  
0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
> lm3 <- lm(Resistance~Temperature, data=raw_datas)
> summary(lm3)

Call:
lm(formula = Resistance ~ Temperature, data = raw_datas)

Residuals:
    Min      1Q  Median      3Q     Max 
-3.9946 -1.3764  0.7285  1.4036  3.4551 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) 12.86392    4.55461   2.824  0.00987 ** 
Temperature  0.80507    0.06427  12.527 1.74e-11 ***
---
Signif. codes:  
0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.995 on 22 degrees of freedom
Multiple R-squared:  0.877,	Adjusted R-squared:  0.8714 
F-statistic: 156.9 on 1 and 22 DF,  p-value: 1.735e-11

T 통계량의 제곱 12.527^2 = F통계량은 156.9 임을 확인할 수 있습니다.

 

 

 

 

2. 결정계수 구하기

 

R^2 = 624.7/(624.7+87.6) = 0.877018

 

 

 

 

+ Recent posts